
CSCI 210: Computer Organization
Lecture 2: Assembly Language

Stephen Checkoway

Oberlin College

Slides from Cynthia Taylor

Announcements

• Reading due before class, linked from blackboard

• Problem set 0 due this Friday at 23:59

– On gradescope, linked from blackboard

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

1

2

3

Selection High Level
Language

Assembly Machine Language

A 3 2 1

B 3 1 2

C 2 1 2

D 1 2 2

E None of the above

How to Speak Computer?

What Your CPU Understands

Electricity

Ones and zeros

Problem: People don’t
like writing programs in
ones and zeros

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler

Machine Interpretation

Machine Language
Program

Assembler

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Machine does something!

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Machine does something!

Machine Language

• Actual operations
built into hardware.

– Translated to
electrical impulses

– 1: voltage > .5 V
0: voltage < .5V

• Provides direct access
to CPU components.

CPU

• Central Processing Unit: contains one or more “cores,” each of
which executes instructions independently from the other
cores (we’re going to only focus on single-core CPUs but the
same ideas apply to multi-core CPUs)

• Performs operations by executing instructions

• Contains
– Mechanism to perform arithmetic operations

– Small amount of memory to hold inputs and outputs for these
instructions

Registers

• (Very) Small amount of memory inside the CPU

• Data is put into a register before it is used in an instruction

• Manipulated data is then stored back in main memory (RAM).

Typical Machine Language Operations

• Load data from main memory (RAM) into a register

• Store the contents of a register into main memory

• Compute the sum (or difference) of two registers, store the result
in a register

• Change which instruction runs next

• Change which instruction runs next based on a register value

Instruction Set Architecture (ISA)

• Abstracts from hardware (voltages) to machine language (1s & 0s)

• Encompasses all the information necessary to write a machine language
program, including instructions, registers, memory access, …

• The definition (specification) of the machine language for a particular CPU

Examples of ISAs

• Intel x86, x86_64

• MIPS32, MIPS64

• ARM: A32 (32-bit ARM), A64 (64-bit ARM), T32 (Thumb), Apple
Silicon

• Power ISA (PowerPC)

• Risc-V

Which of the following statement is generally true about ISAs?

Select Statement

A Some models of processors support exactly one ISA,
others support multiple (usually related) ISAs

B An ISA is unique to one model of processor.

C Every processor supports multiple ISAs.

D Each processor manufacturer has its own unique ISA.

E None of the above

17

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Machine does something!

x = 4;

y = 5;

x = x + y;

addi $t0, $zero, 4 #set $t0 to 4

addi $t1, $zero, 5 #set $t1 to 5

add $t0, $t0, $t1 #perform the add

High-level code

MIPS code

Usually, 1 line of high-level code is translated to multiple
assembly instructions; these are very simple

Assembly Language

• Abstraction of machine language
– From 1s & 0s to symbolic names

• Allows direct access to architectural features (registers,
memory)

• Symbolic names are used for
– operations (mnemonics)

– memory locations (variables, branch labels)

20

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Machine does something!

Group Discussion: What are some advantages to a
high-level language over programming in assembly?

CS History: Rear Admiral Grace
Hopper

• Invented the compiler

• Conceptualized machine-
independent programming
languages.

• Popularized term “debugging”

Not actually the first use of “bug” but a good story
nevertheless

https://daily.jstor.org/the-bug-in-the-computer-bug-story/

A single program written in a high-level language
can be compiled into ______ assembly language

programs

A. Exactly one

B. Multiple

C. At most three

A single program written in assembly can be
assembled into ______ machine language programs

A. Exactly one

B. Multiple

C. At most two

High-level language program (in C)
 void swap (int v[], int k) {
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
 }

Assembly language program (for MIPS)
 swap: sll $2, $5, 2

 add $2, $4, $2
 lw $15, 0($2)
 lw $16, 4($2)
 sw $16, 0($2)
 sw $15, 4($2)
 jr $31

Machine (object, binary) code (for MIPS)
 000000 00000 00101 0001000010000000

 000000 00100 00010 0001000000100000

. . .

C compiler

assembler

one-to-many

one-to-one

Reading

• Next lecture: Hardware!

– Sections 1.4 and 1.5

• Problem set 0 due Friday at 11:59 p.m.

27

	Slide 1: CSCI 210: Computer Organization Lecture 2: Assembly Language
	Slide 2: Announcements
	Slide 3
	Slide 4: What Your CPU Understands
	Slide 5: How to Speak Computer
	Slide 6: How to Speak Computer
	Slide 7: How to Speak Computer
	Slide 8: How to Speak Computer
	Slide 9: How to Speak Computer
	Slide 10: Machine Language
	Slide 11: CPU
	Slide 12: Registers
	Slide 13: Typical Machine Language Operations
	Slide 14: Instruction Set Architecture (ISA)
	Slide 15: Examples of ISAs
	Slide 16: Which of the following statement is generally true about ISAs?
	Slide 17: How to Speak Computer
	Slide 18
	Slide 19: Assembly Language
	Slide 20: How to Speak Computer
	Slide 21: Group Discussion: What are some advantages to a high-level language over programming in assembly?
	Slide 22: CS History: Rear Admiral Grace Hopper
	Slide 23: Not actually the first use of “bug” but a good story nevertheless
	Slide 24: A single program written in a high-level language can be compiled into ______ assembly language programs
	Slide 25: A single program written in assembly can be assembled into ______ machine language programs
	Slide 26
	Slide 27: Reading

